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Introduction

CCURATE prediction of the aerodynamic features of airfoils

and wings as well as complete aircraft configurations are im-
portantchallenges.One important problemis the predictionof high-
lift configurations and especially the prediction of stall. These cases
include phenomena like transition to turbulence, boundary-layer
separation, free shear layers in the wake, adverse pressure gradi-
ents, surface curvature, etc. Vast amount of effort has been put into
this aerodynamic problem including testing of different numeri-
cal schemes, grid-dependencestudies, and in particular turbulence
modeling. However, unanswered questions still remain concern-
ing the importance of the grid topology and its quality, numerical
scheme, and the interdependence of these factors. These questions
need to be answered before any definite conclusion concerning the
modeling of the turbulence can be made.

This article deals with numerical computations of the A-airfoil
test case! at the angle of attack of 13.3 deg. The Mach number
is 0.15, and the Reynolds number is 2.07 x 10° with respect to the
chordlength. The wind-tunnelmodelhas a trailing-edgethicknessof
0.5% of the chord, which has been neglected in most previous com-
putations where the geometry was modified to have a sharp trailing
edge. As noted by Jeffrey and Zhang,> Stanaway et al.,> Thompson
and Whitelaw,* and Thompson and Lotz,’ the shape of the trailing
edge could have a big influence on the characteristics of the profile
particularlyat high angle of attack where separationof the boundary
layer occurs.

Previous works (see Haase et al.' and Lorentzen and Lindblad®)
were focusing mainly on the different turbulence models. It was
found by Lorentzenand Lindblad® that the separatedboundarylayer
reattaches at the very end of the trailing edge. It was discussed that
this effect could be connected with either numerical or physical
problems caused by the sharp trailing edge of the profile geometry
and the C grid topology. In this study the focus will be to assess the
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importance of a blunt trailing edge and the quality of the grid in that
region.

Computational Results

The Reynolds-averagedNavier-Stokes equations were solved by
using the finite volume code EURANUS for structured multiblock
grids. Convergenceto steady state is obtained by explicitlocal time
stepping and multigrid acceleration. To improve the convergence,a
local low-speed preconditioner (see Person® and Turkel et al.?) of
Turkel’s type has been used. When solving time-dependent prob-
lems, a second-orderaccurate implicit approach was used using the
dual time-stepping procedure proposed by Jameson.'®

At the far field a Riemann boundary condition corrected with lift-
induced circulation is used (see Lorentzen and Lindblad®) and the
turbulent kinetic energy and specific rate of dissipation were pre-
scribedtok=1m?s 2 andw=11,111s"!, respectively. Transition
to turbulence was prescribed at 30% of the chord at the pressure
side and 12% at the suction side.

To evaluate the influence of the trailing-edge geometry and of the
grid quality around the trailing edge on the solution two different
grids, C and C—H—O, were constructed. The C grid has a sharp
trailing edge and a standard one-block C topology with 66,000 grid
points. The C—H—O grid resolves the blunt trailing edge by using a
local near-wall O topology and uses 65,000 grid points. The details
of the grid around the trailing edge are shown in Fig. 1. A set of
coarser grids, C2 and C2—H2—-02, were constructed by removing
every second grid point in all directions.

The standard explicit local time-stepping method for obtaining
a steady-state solution did not converge completely for the blunt
trailing edge. However, when switching to the much more computer
expensive time-accurate integration method a steady-state solution
was obtained. The unsteadiness resulting from the local time step-
ping is, thus, only a numerical anomaly. All computational results
on the C—H—O grid are obtained using the time-accurate implicit
integration method.

The comparisons between the different grids were carried out
using the Wallin and Johansson'' EARSM k- turbulence model.
Drag was calculated by integrating the momentum losses in the
wake behind the profile using the method of Young.?

Trailing-Edge Bluntness

The influence of the bluntness of the trailing edge is assessed by
comparing the computational results on the C and C—H—O grids.

Fig. 1 Computational grid around the A-airfoil trailing edge: a) one-
block C grid and b) three-block C—H—O grid. 0.99 < x < 1.01,
—0.022 <y < =0.002.
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Table 1 Lift, drag, and separation point at different grids
for the A-airfoil (Turbulence is modeled using EARSM)

Grid C C2 C-H-O (C2-H2-02 Experiment
cr 1.550 1.542 1.601 1.579 1.562
cp 0.0198 —— 0.0206 0.0287 0.0208
Separation  90.2%  89.3% 91.7% 87.3% 82%
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Fig. 2 Coefficients a) ¢, and b) ¢, at different grids for the A-airfoil.
Turbulence is modeled using EARSM.

A significant higher lift ¢, is obtained from the C—H—O grid (see
Table 1), but only a minor influence on the drag ¢ and separation
pointcan be observed. The increasedliftis alsonotedin a decreased
pressure coefficient ¢, near the trailing edge on the suction side for
the blunt trailing-edge case (see Fig. 2a). No significant difference
in skin-friction coefficient ¢ in Fig. 2b can be seen.

The main explanation for the increased lift is that the separation
point (Rotta condition) is located at the lower edge of the blunt
trailing edge compared to the sharp trailing edge where the sepa-
ration point should be at the trailing edge. As noted in Jeffrey and
Zhang,? the vortices developingbehind the trailing edge give rise to
trailing-edge suction and cause increased lift.

Actually, in the computation of the sharp trailing edge the sep-
aration point is located a few grid points upstream of the trailing
edge on the suction side, which can be seen as a wiggle in ¢ close
to the trailing edge in Fig. 2b. The reason for that is the artificial
numerical singularity at the trailing edge, and it leads to an even
more decreased lift.

The velocity profiles at the positions of 96 and 99% of the chord
on the suction side (see Fig. 3) show that the computation on the
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Fig. 3 Velocity profiles at different grids for the A-airfoil at 96 and
99% of cord. Turbulence is modeled using EARSM.

C—H-O grid gives a somewhat thinner boundary layer than that
obtained on the C grid. The wiggle in ¢, close to the trailing edge
can only be seen as a small near-wall disturbance in the velocity
profile at 99%.

The presence of the blunt trailing edge effectively enhances the
spreading of the near wake and influences the flow close to the lead-
ing edge as well as the global lift. By approximating the trailing
edge as sharp, which is usually done in computational fluid dynam-
ics (CFD) computations, these effects are lost in the computations.
Moreover, when including the blunt trailing edge in the computa-
tional grid the base region must be properly resolved by using a
local O topology in order to capture the enhanced spreading and the
shifted position of the separation point caused by the bluntness (see
Jirasek et al.!® for more details).

Grid Convergence

The computationson the coarsergrids, C2 and C2—H2—02 where
every second grid point has been removed, are used for assess-
ing the level of grid convergence. There is a significant difference
in drag and in the local pressure distribution close to the trailing
edge between the two grid levels. Also the separation position is
affected. However, the solutions are reasonably well resolved also
at the coarser level giving only minor differences in the solution
away from the details around the trailing edge. Thus, the solution
on the fine grids are assumed to be almost grid converged, and the
differencesbetween the differentaspects of geometry and modeling
are significant compared to the numerical error.

The solutions on the coarse grids in some aspects are closerto the
experimental results compared to the fine grids. There are, however,
a number of other factors than the grid convergence that influence
the comparison with the experimental data. In particular the mod-
eling of the turbulence is known to have a large influence on the
solution. It is of major importance that a grid converged solution
can be demonstrated before any comparison with experimental data
is made.

The numerical method used is basically compressible, and low-
speed preconditioning is used for speeding up the convergence to
steady state. The Turkel® method does not only improve the steady-
state convergence, but also the numerical or artificial dissipation for
low-Mach-numbercases. Without such preconditioningit is usually
not possible to converge at an incompressiblesolution by letting the
Mach number approach zero (see Turkel®). For this particular case
the preconditioning improved also the grid-convergence rate. The
differencesbetween the different grid levels were much larger with-
outpreconditioning.e.g., the differencein thec; peak aftertransition
between the C and C2 grids were about seven times larger without
preconditioning compared to the difference when preconditioning
was used (see Jirdsek et al.'?).
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Turbulence Modeling

Three different two-equation turbulence models were used in this
study. The Menter'* BSL and SST k- models and the Wallin and
Johansson'! explicit algebraic Reynolds-stress model (EARSM).
The EARSM is based on the Menter BSL k-w model where the
original eddy-viscosity assumption is replaced with the algebraic
Reynolds-stressrelation. The computational results were obtained
on the C—H—O grid.

The differencebetween the baseline (BSL) and shear-stresstrans-
port (SST) models is that the SST model has an empirical limitation
of the eddy viscosity in cases with high shear rate. That limitation
was found to improve the predicted forces and flowfield (see
Table 2 and Figs. 4-7). A further improvement was obtained using
the EARSM, where the eddy-viscosity assumption is completely
avoided.

Even if there are significant improvements by using the more
advanced EARSM, the separation is still predicted too short and,
especially, too thin. Even at a position upstream of the separation at
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Fig. 4 ¢, coefficient for the A-airfoil at the C— H- O grid using differ-
ent turbulence models.
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Fig. 7 Velocity profiles for the A-airfoil at the C— H— O grid using
different turbulence models at 60, 90, 96, and 99 % of cord.
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Table 2 Lift, drag, and separation point for the A-airfoil
at the C— H— O grid using different turbulence models

EARSM
Model BSL SST EARSM (transition 7.8%) Experiment
crL 1.668  1.631 1.601 1.556 1.56
¢p 0.0202 0.0200 0.0206 0.0242 0.0208
Separation 96.6% 93.2% 91.7% 88.0% 82%

60% chord, the predicted velocity profiles are too full. The effect of
the transition on the suction side is tested by moving the transition
point 4% upstream using EARSM, which improved some aspects
of the solution. The velocity profile at 60% chord in Fig. 7 is now
better predicted, and the separation is increased leading to a bet-
ter predicted lift. However, the drag is now overpredicted, and the
laminar separation bubble has disappeared. Moreover, there is no
support from the experimental data for moving the transition point
upstream.

Conclusions

Almost grid-convergedcomputational solutions on the A-profile
has been demonstrated for both sharp and blunt trailing edges. Low-
speed preconditioningimproved the convergence to steady state as
well as the grid convergence. The wind-tunnel profile has a trailing-
edge bluntness of 0.5% of the chord, whereas most computations
are made on a modified sharp trailing-edge geometry. It was found
that the bluntness increases the lift by approximately 3% in the
computations.

Three different two-equation turbulence models were tested. It
was found that the more advanced algebraic Reynolds-stressmodel
gave better predictions than more standard eddy-viscosity models.
The lift and drag was fairly well predicted, but the trailing-edge
separation was underestimatedin length and especiallyin thickness.
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Introduction

OLLOWING a suggestion of Rubbert! that when using the

vortex lattice lifting surface method (VLM) equally spaced di-
visions should be inset from the tip by a fractiond (0 <d < 1) of the
strip width, Hough?? has demonstrated impressive improvement in
the estimation of lift curve slope Cy, of a wing without using an
inordinate number of spanwise strips, specifically ford = %. The tip
inset concept and some of Hough’s convergence results for C;, are
shown in Fig. 1.

Hough’s recommendation of d = i was based on an analysis of
anellipticallift distribution, which is typical of a steady symmetrical
aerodynamicloading. It is the purpose of this Note to investigate the
convergence improvement that can be obtained by applying the tip
inset correction to the oscillatory doublet-lattice method*> (DLM,
which reduces to the VLM in the steady case) for conditions in
which elliptical lift distributions are not expected.

The tip correction is implemented by reducing the effective span
of the wing (the span that is actually paneled with doublet-lattice
boxes) by the factor NS/(NS + d), where NS is the number of span-
wise strips and d is the tip inset factor (typically +). The lack of
an aerodynamic panel on the most outboard tip of the wing has the
effectof driving the tip loading toward the correct value of zero. Be-
cause the DLM assumes constant loading (spanwise) within a box,
itrequiresa very highresolutionto capture the correct wing-tip load
distribution, and the DLM will typically overestimate the tip load-
ing and approach the correct results from above as the resolution is
refined.

Results

Rectangular Wings

Two wings pitching about their midchords at a Mach number of
M =0.80 are studied. The first wing has aspect ratio of AR =2.
It is divided into various NS and various numbers of chordwise
boxes (NC) such that the maximum box aspectratio is less than 8.0.
The value of NC necessary for convergencedepends on the reduced
frequency k, = wc/2V, where w is the angular frequency (rad/sec),
¢ is the reference chord (¢ = 1.0 for the rectangular wings), and V
is the freestream velocity. The guideline of Ref. 5 recommends 50
boxes per wavelength A, where A = ¢ /k,.
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